The Emergency Department needs Emergency Care

Christien van der Linden PhD

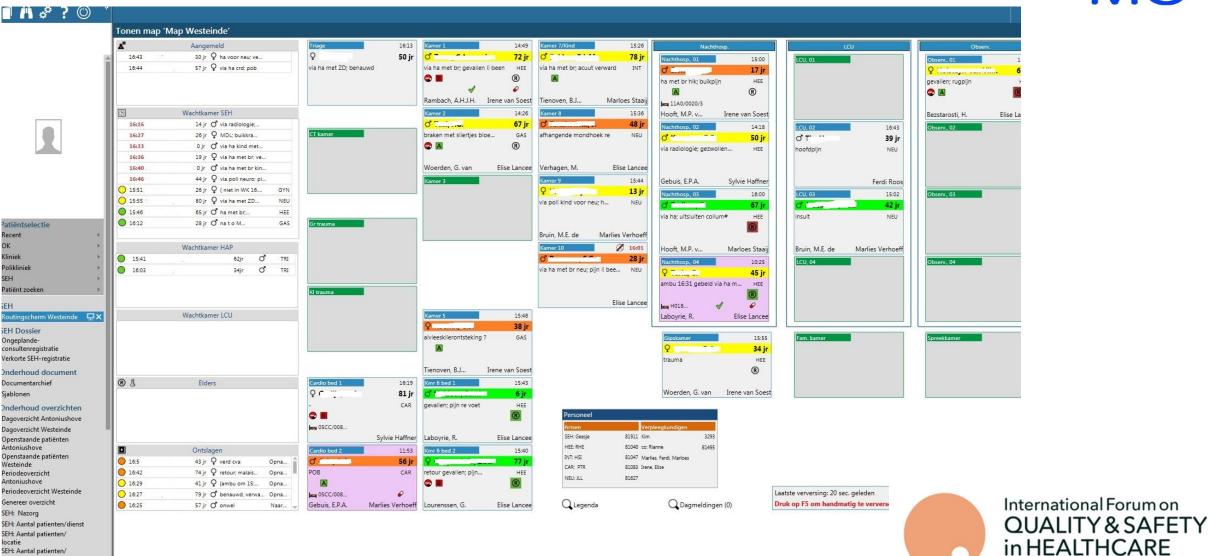
Disclosure & Introduction

- Employer: HMC, The Netherlands
- No commercial support / No conflicts of interest
- International Advisory Board Journal International Emergency Nursing
- Scientific Advisory Committee of the European Society of Emergency Nursing EuSEN
- Projects groups Quality & Safety EuSEM
- Reviewer: IEN, PLOS ONE, EMJ, EJEM, Family Practice, TEOJ, BMJ Open, JEN, BMC, Agency Healthcare Research & Quality.
- Research grants to investigate ED crowding & centralization (ZonMw)

Crowding

Picture: Emdocs.net




- Found on the floor after an unwitnessed fall
- Responsiveness \searrow

International Forum on QUALITY & SAFETY in HEALTHCARE GOTHENBURG

Marie, arriving at a crowded ED

H+ MC

GOTHENBURG

Reduced Quality of Care

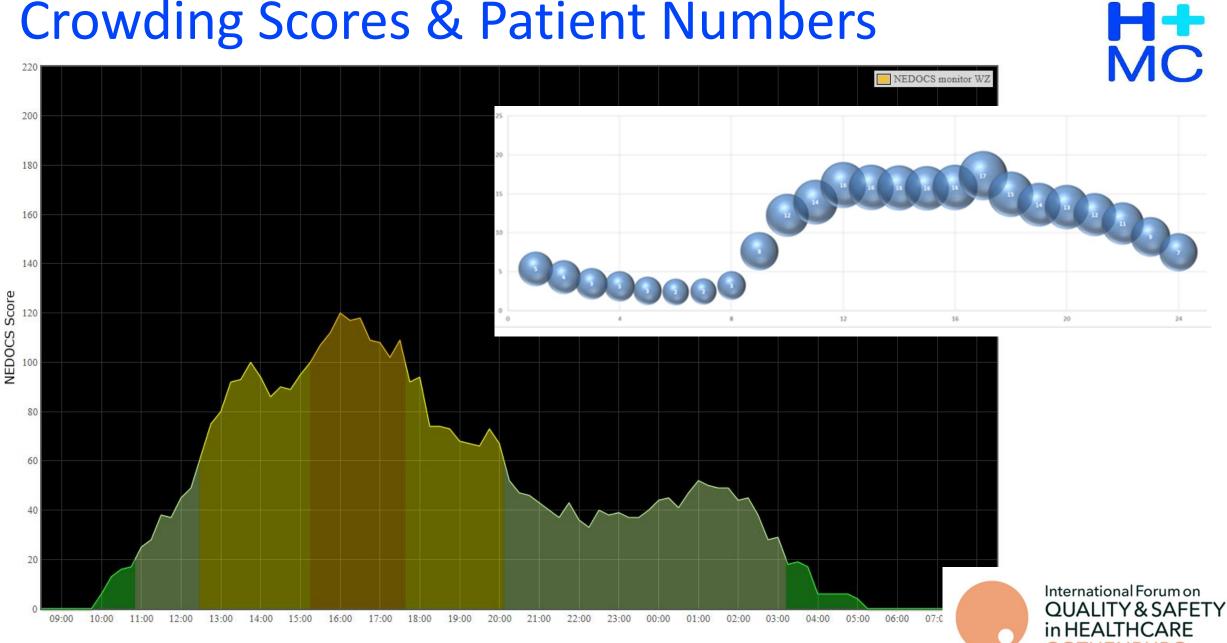
- Impaired access, ambulance diversion
- Patients leaving the ED without being seen
- Increasing wait times
- Delays in diagnosis / Treatment delays
- Risk of preventable medical errors
- Higher complication rate
- Extended length of stay
- Longer hospital stays

 less inpatient capacity

References: Morley et al., ED crowding: A systematic review of causes, consequences and solutions, PLO^c One, 2018; McKenna et al., ED and hospital crowding: causes, consequences, and cures, CEEM, 2019.

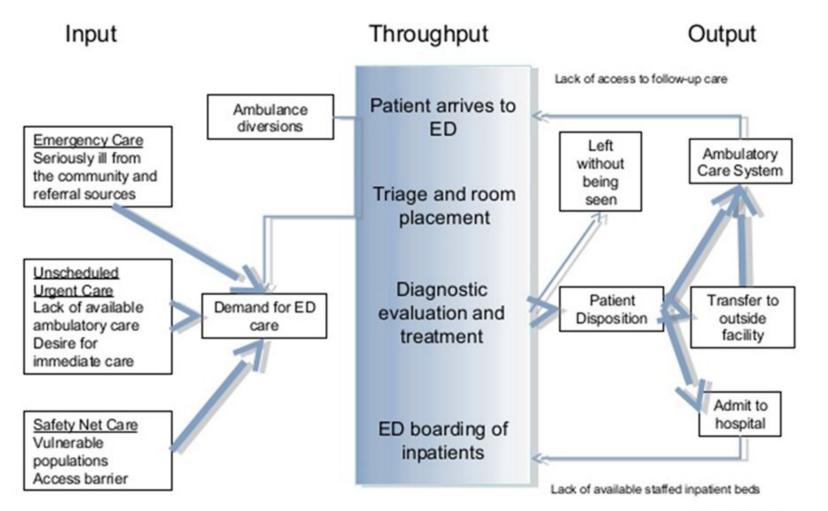
H+ MC

International Forum on QUALITY & SAFETY in HEALTHCARE GOTHENBURG Every hour delay from stroke onset to reperfusion results in a 7.7% decreased probability of functional independence^{*}



*Mulder et.al., Circulation, 2018;138:232-240

H+ MC


Crowding Scores & Patient Numbers

HENBURG

ED Flow

COURTESY ACEP

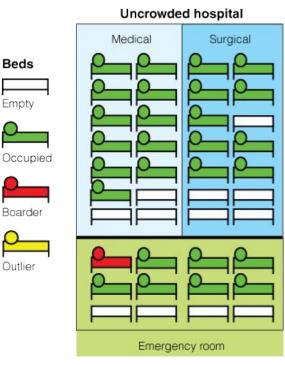


Figure: ACEP, IHI 2017

Boarding / Exit Block – Access Block

References: McKenna et al., ED and hospital crowding: causes, consequences, and cures, CEEM, 2019; Figure: Slideplayer.com, Spiruvilus et al., 2005.

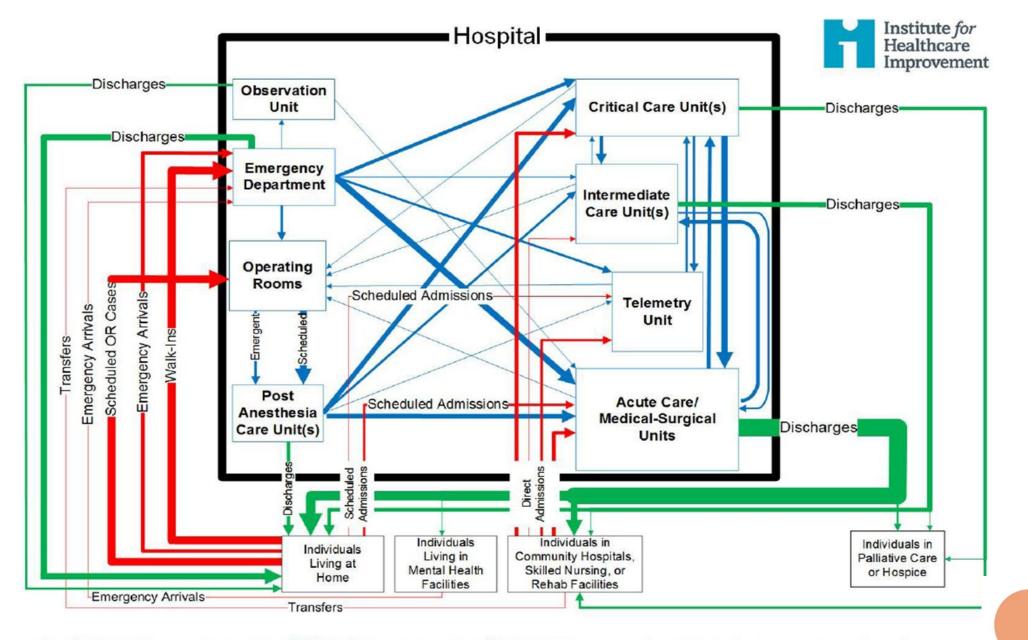
Beds

Empty

Outlier

Low ward occupancy: empty beds; no medical outliers; few ED boarders; good patient flow Emergency room

Crowded hospital


Medical

High ward occupancy: no empty beds; medical outliers; many ED boarders; poor patient flow

Surgical

H+ MC

International Forum on

GOTHENBURG

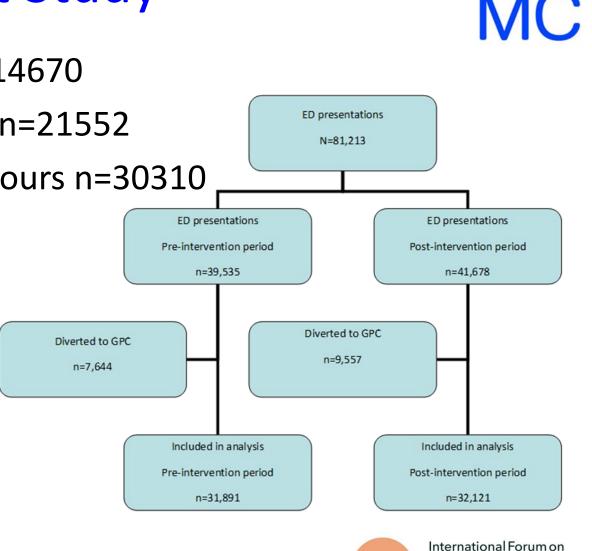
QUALITY & SAFETY in HEALTHCARE

Multimodal Intervention

- A Lean radiology project
- Adding a Nurse Practitioner during day and evening shifts
- Extending the admission offices' opening hours
- Adding five attending medical specialists (a surgeon, a cardiologist, a neurologist, a radiologist and an internist) during peak hours

Aims of the Intervention

- Less crowding
- Decrease patients' length of stay
- Decrease radiology turnaround times
- Less patients leaving without being seen
- Less revits
- Shorter inpatient length of stay



□ IMPROVE PATIENT FLOW AND QUALITY OF PATIENT CARE

18 Months Pre- and Post Study

- Crowding, n=43978 / peak hours n=14670
- Patient visits, n=64012 / peak hours n=21552
- Radiology reports, n=40769 / peak hours n=30310
- LWBS
- Revisits
- Inpatient length of stay

QUALITY & SAFETY

in HEALTHC

Patient Experiences

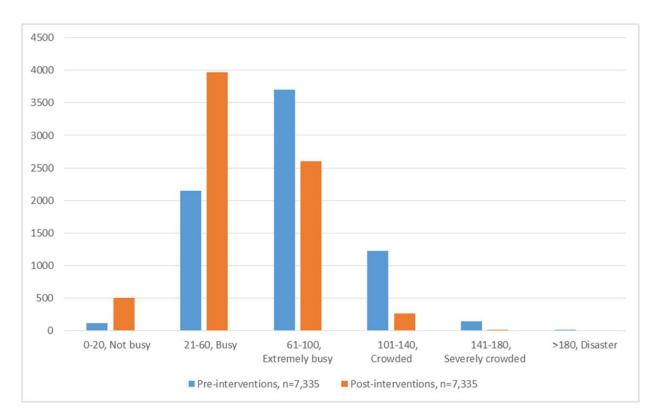
Promoters		Passives		Detractors						
()	(•••	·	$\begin{pmatrix} \cdot \\ \circ \end{pmatrix}$	(\mathbf{x})	$\begin{pmatrix} \cdot & \cdot \\ \circ & \cdot \end{pmatrix}$	() ()			(
10	9	8	7	6	5	4	3	2	1	0
Net Promoter Score = % Promoters - % Detractors										

- Satisfaction scores 8 and 8
- Net Promoter Score increased from -15 to +20

	Control week $(n = 103) [n (\%)]$	Pilot week 5 ($n = 65$) [n (%)]
Long waiting time to physicians' contact	30 (29)	13 (20)
Short waiting time to physicians' contact	34 (33)	30 (46)
First contact with physician rated as good	64 (62)	47 (72)
Waiting times need to be improved	41 (40)	12 (19)
Facilities need to be improved ^a	13 (13)	_
Communication and information need to be improved ^b	_	3 (5)
Satisfaction score [median (range)] ^c	8 (1-10)	8 (0-10)
Recommendation score [median (range)] ^d	7 (1-10)	8 (4-10)
Net promoter score ^e	- 15	+20

^aFacilities: better chairs in the waiting room, food, and drinks.

^bInformation on discharge instructions


^c10-point Likert scale: 0 (not satisfied at all) to 10 (very satisfied).

^d10-point Likert scale: 0 (not likely at all) to 10 (very likely).

eNet promoter score: the difference between percentage promoters (individuals who scored 9 and 10) and percentage detractors (individuals who scored 0-6).

Crowding

- 14670 measurements
- Median NEDOCS: 74 🗆 54
- NEDOCS >100: 18.6%
 3.5%

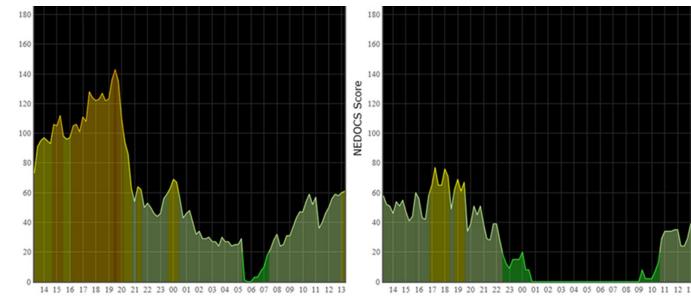
H+ MC

Results, Radiology Turnaround Times

	Pre-intervention period, 10,564 orders in 8,070 presentations	Post-intervention period, 10,990 orders in 7,957 presentations	P-value
Median TAT radiology minutes (IQR)	71 (40-129)	38 (25-61)	<0.001
Median TAT per category minutes (IQR) Plain radiograph CT Ultrasonography	55 (32-96) 94 (54-175) 109 (70-170)	30 (21-45) 56 (37-85) 37 (25-56)	<0.001 <0.001 <0.001

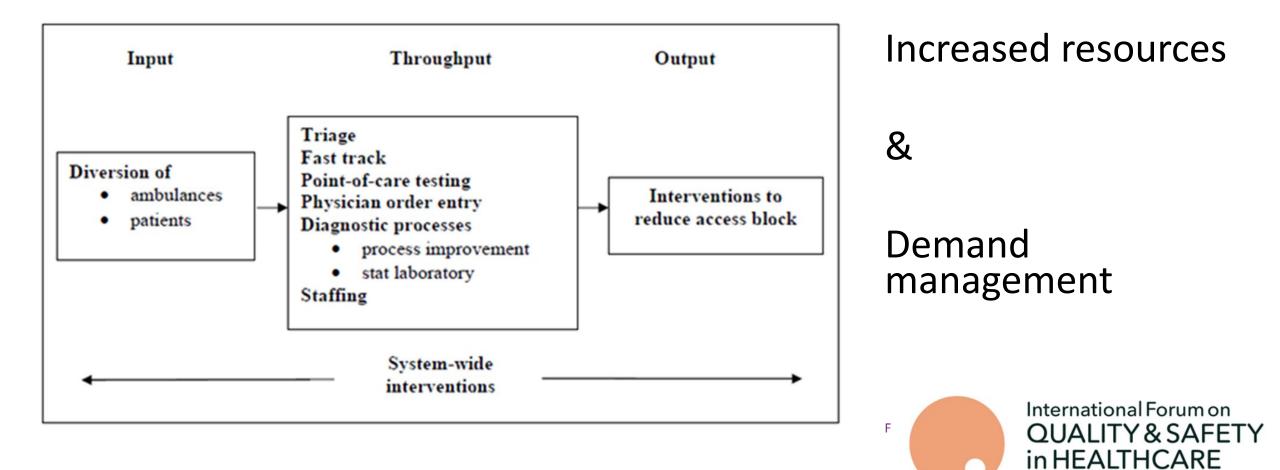
Results, Length Of Stay

	Pre-intervention period n=15,115	Post-intervention period n=15,195	P-value
Median LOS in minutes (IQR)	167 (113-236)	154 (100-220)	<0.001
Median LOS per specialism in minutes (IQR) Cardiology Internal Medicine Neurology Surgery Other specialism	166 (129-218) 206 (151-282) 203 (143-276) 141 (93-208) 160 (100-229)	158 (122-214) 206 (149-274) 178 (123-248) 124 (79-183) 147 (91-213)	<0.001 0.233 <0.001 <0.001 <0.001
Median LOS for self-referred patients	142 (94-203)	130 (84-191)	<0.001
Median LOS for admitted patients	212 155-287)	204 (147-271)	<0.001
Median LOS for patients who had at least one radiology order	194 (138-266)	180 (126-248)	<0.001



Results, Overall Effects

- LOS \downarrow 8 min per patient, 13 min per patient during peak hours
- With 100-120 pts: 15-16 hours per day
- Annually 5743 hours


Conclusions: In this hospital, a multimodal intervention successfully reduces crowding, radiology turnaround times, patients' LOS, number of patients LWBS and the number of unscheduled return visits, suggesting improved ED processes. Further research is required on total costs of care and long-term effects.

Change since Marie arrived at our ED

THENBURG

Arrival on a crowded emergency department \Box delayed door-to-physician time, no intervention room available.

Transfer to another hospital
Delayed treatment time

□ Chances to a disability-free life ↓□ Increased risk of death

Linden et al. International Journal of Emergency Medicine (2019) 12:21 https://doi.org/10.1186/s12245-019-0238-7

International Journal of **Emergency Medicine**

ORIGINAL RESEARCH

Open Access

The impact of a multimodal intervention on emergency department crowding and patient flow

M. C. (Christien) van der Linden¹^(b), H. M. E. (Jet) van Ufford², Project Group Medical Specialists³ and N. (Naomi) van der Linden^{4*}

Reminder of important clinical lesson

Case report

BMJ Case Rep

Night-time confusion in an elderly woman post-stroke

M Christien van der Linden 🤤 ,¹ Ido R van den Wijngaard,² Shanna van der Linden,³ Naomi van der Linden⁴

H+ MC

M.Christien van der Linden PhD **Clinical Epidemiologist Acute Care** c.van.der.linden@haaglandenmc.nl

Twitter: @Chris10vdL

